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Abstract. A new hierarchy of combinatorial operads is introduced, involving fam-
ilies of regular polygons with configurations of arcs, called decorated cliques. This
hierarchy contains, among others, operads on noncrossing configurations, Motzkin
objects, forests, dissections of polygons, and involutions. All this is a consequence of
the definition of a general functorial construction from unitary magmas to operads.
We study some of its main properties and show that this construction includes the
operad of bicolored noncrossing configurations and the operads of simple and double
multi-tildes. We focus in more details on a suboperad of noncrossing decorated cliques
by computing its presentation, its Koszul dual, and showing that it is a Koszul operad.
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Introduction

Regular polygons endowed with configurations of arcs are very classical combinatorial
objects. Up to some restrictions or enrichments, these polygons can be put in bijection
with several combinatorial families. Triangulations are the most celebrated among these,
but also noncrossing configurations [6], dissections of polygons, noncrossing partitions,
or involutions belong also to this world. As many combinatorial objects, the polygons of
most of these families can be described by composing or grafting smaller pieces together.
Operads [10, 12] are algebraic structures abstracting the notion of planar rooted trees and
their grafting operations. For this reason, operads are one of the most suitable modern
algebraic structures to study such objects. In the last years, a lot of combinatorial sets
have been endowed fruitfully with a structure of an operad (see for instance [3, 11,
4, 8, 7]), each time providing results about enumeration, discovering new statistics, or
establishing new links (by morphisms) between different combinatorial sets.

The purpose of this work is twofold. First, we are concerned in endowing the whole
set of polygons with configurations of arcs with a structure of an operad. This leads to
see these objects under a new light, stressing some of their combinatorial and algebraic
properties. Second, we would provide a general construction of operads of polygons rich
enough so that it includes some already known operads. As a consequence, we obtain
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alternative constructions of existing operads and new interpretations of these. We work
here withM-decorated cliques, that are complete graphs whose arcs are labeled onM,
whereM is a unitary magma. These objects are natural generalizations of polygons with
configurations of arcs since the arcs of anyM-decorated clique labeled by the unit ofM
are considered as missing. The elements ofM different from the unit allow moreover to
handle polygons with arcs of different colors. We propose a functor C from the category
of unitary magmas to the category of operads. It builds, from any unitary magma M,
an operad CM onM-decorated cliques.

This operad has a lot combinatorial and algebraic properties. First, CM admits as
quotients of operads several structures on particular families of polygons with config-
urations of arcs. We can for instance control the degrees of the vertices, the crossings,
or the nestings between the arcs to obtain new operads. We hence get quotients of
CM involving, among others, Schröder trees, dissections of polygons, Motzkin objects,
forests, with colored versions for each of these. This leads to a new hierarchy of oper-
ads, wherein links between its elements appear as surjective or injective morphisms of
operads (see Figure 1). One of the most notable of these is built by considering the M-
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Figure 1: A diagram of suboperads and quotients of CM. Arrows� (respectively�)
are injective (respectively surjective) morphisms of operads. Here, M is a unitary
magma without nontrival unit divisors.

decorated cliques that have vertices of degrees at most 1, leading to a quotient InvM of
CM involving standard Young tableaux (or equivalently, involutions). To the best of our
knowledge, InvM is the first nontrivial operad on these objects. Besides, the construc-
tion C allows to retrieve the operad BNC of bicolored noncrossing configurations [4] and
the operads MT and DMT respectively defined in [11] and [8] that involve multi-tildes
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and double multi-tildes, operators coming from formal languages theory [2]. The sub-
operad NCM of CM of M-noncrossing configurations, that are M-decorated cliques
without crossing diagonals, admits some nice algebraic properties. It is first generated
by elements of arity two (which is not the case of CM), and its nontrivial relations are
concentrated in arity three. This operad is also a Koszul operad.

This text is organized as follows. The construction C is defined in Section 1 and
its first properties are listed. Among other, we describe the generators of CM, its di-
mensions, establish that it admits a cyclic operad structure, and define two alternative
bases, the H-basis and the K-basis, by considering a partial order structure on the set of
M-decorated cliques. Section 2 is devoted to define some quotients of CM and to con-
struct, through C, the operads BNC, MT, and DMT. Finally, we study in more details the
operad NCM in Section 3. We show that this operad is an operad of Schröder trees with
labels on arcs satisfying some conditions. We compute its dimensions, its presentation,
its Koszul dual, and establish the fact that it is a Koszul operad.

Notations and general conventions. All the algebraic structures of this article have a
field of characteristic zero K as ground field. We shall use the classical notations about
operads [10] and more precisely those of [7]. Since we consider only nonsymmetric
operads, we call these simply operads. The sequences of integers cited in the sequel come
from [13].

1 Operads of decorated cliques

1.1 Unitary magmas and decorated cliques

A clique of size n > 1 is a complete graph p on the set of vertices [n + 1]. An arc of p is
a pair of integers (x, y) with 1 6 x < y 6 n + 1, a diagonal is an arc (x, y) different from
(x, x + 1) and (1, n + 1), and an edge is an arc of the form (x, x + 1) and different from
(1, n + 1). We denote by Ap the set of arcs of p. The i-th edge of p is the edge (i, i + 1) and
the arc (1, n + 1) is the base of p. LetM be a unitary magma, that is a set endowed with
a binary operation ? admitting a left and right unit 1M. An M-decorated clique (or an
M-clique for short) is a clique p endowed with a map φp : Ap →M. For convenience, for
any arc (x, y) of p, we shall denote by p(x, y) the value φp((x, y)). Moreover, we say that
the arc (x, y) is labeled by p(x, y). When the arc (x, y) is labeled by an element different
from 1M, we say that the arc (x, y) is solid.

In our graphical representations, we shall stick to the following drawing conventions
for M-cliques. First, each M-clique is depicted so that its base is the bottommost seg-
ment and vertices are implicitly numbered from 1 to n + 1 in the clockwise direction.
Second, the label of any arc (x, y) of p is represented in the following way. If (x, y) is
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solid, we represent it by a line decorated by p(x, y). If (x, y) is not solid and is an edge
or the base of p, we represent it as a dashed line. In the remaining case, when (x, y) is a
diagonal of p and is not solid, we do not draw it.

To explore some examples in this article, we shall consider the additive unitary
magma Z, the cyclic additive unitary magma N` on Z/`Z, and the unitary magma
D` on the set {1, 0, a1, . . . , a`} where 1 is the unit of D`, 0 is absorbing, and ai ? aj = 0
for all i, j ∈ [`]. For instance,

p :=
−1

1

2

3 2
2 (1.1.1)

is a Z-clique of size 6 such that, among others, p(1, 2) = −1, p(1, 5) = 1, p(3, 7) = 3,
p(5, 7) = 2, p(2, 3) = 0, and p(2, 6) = 0.

1.2 A functor from unitary magmas to operads

For any unitary magma M, we define the vector space CM :=
⊕

n>1 CM(n) where
CM(1) is the linear span of the singleton consisting in theM-clique of size 1 whose
base is labeled by 1M, and for any n > 2, CM(n) is the linear span of all M-cliques
of size n. We endow CM with a partial composition map ◦i defined linearly in the
following way. If p and q are twoM-cliques of respective sizes n and m, and i is a valid
integer, p ◦i q is obtained by gluing the base of q onto the i-th edge of p, by relabeling
the common arcs between p and q, respectively the arcs (i, i + 1) and (1, m + 1), by
p(i, i + 1) ? q(1, m + 1), and by renumbering the vertices of the clique thus obtained from
1 to n + m− 1 (see Figure 2). For example, in CZ, one has the two partial compositions

ai i+1
p ◦i

b

q = ai i+1
p

b

q

= i i+ma ? b

Figure 2: The partial composition of CM. Here, p and q are twoM-cliques. The label
of the i-th edge of p is a ∈ M and the label of the base of q is b ∈ M. The size of q
is m.

1 −2

−2 1 ◦2
1

3

1 2 =
1 −2

1 1
1

2

1 ,
1 −2

−2 1 ◦2
1

2

1 2 =
1 −2

1
1

2

1 . (1.2.1)

Moreover, if M1 and M2 are two unitary magmas and φ : M1 → M2 is a unitary
magma morphism, we define Cφ : CM1 → CM2 as the linear map sending any M1-
clique p of size n to the M2-clique (Cφ)(p) of size n such that, for any arc (x, y) ∈ Ap,
((Cφ)(p))(x, y) := φ(p(x, y)).
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Theorem 1.2.1. The construction C is a functor from the category of unitary magmas to the
category of operads. Moreover, C respects injections and surjections, and all operads of the image
of C are set-operads.

Proof. We just sketch the proof of the fact that CM is an operad when M is a unitary
magma. This amounts to prove that the partial composition of CM satisfies, for allM-
cliques p (respectively q, r) of sizes n (respectively m, k), (p ◦i q) ◦i+j−1 r = p ◦i (q ◦j r)
where i ∈ [n], j ∈ [m], (p ◦i q) ◦j+m−1 r = (p ◦j r) ◦i q where i < j ∈ [n], and ◦1 p = p =
p ◦i where i ∈ [n]. Each of these relations can be checked for example with the help
of Figure 2.

1.3 General properties

Proposition 1.3.1. Let M be a finite unitary magma. For all n > 2, dim CM(n) = m(n+1
2 ),

where m := #M.

If p is an M-clique, we say that two diagonals (x, y) and (x′, y′) of p are crossed if
x < x′ < y < y′ or x′ < x < y′ < y. Let GCM be the set of allM-cliques p such that, for
any diagonal (x, y) of p, there is at least one solid diagonal (x′, y′) of p such that (x, y)
and (x′, y′) are crossed. Observe that, according to this description, allM-cliques of size
2 belong to GCM.

Proposition 1.3.2. LetM be a unitary magma. The set GCM is the unique minimal generating
set of CM.

Recall that an operad O defined in the category of sets is basic [14] if all the maps
◦y

i : O(n)→ O(n + |y| − 1), y ∈ O, defined by ◦i(x) := x ◦i y are injective.

Proposition 1.3.3. LetM be a unitary magma. As a set-operad, CM is basic if and only ifM
is right cancellable.

Let ρ : CM → CM be the linear map sending any M-clique p to the M-clique
obtained by rotating by one step p in the counterclockwise direction.

Proposition 1.3.4. Let M be a unitary magma. The map ρ endows CM with a cyclic operad
structure.

Let �be (respectively �d) be the partial order relation on the set of all M-cliques,
where, for any M-cliques p and q, one has p �be q (respectively p �d q) if q can be
obtained from p by replacing some labels 1M of its edges or its base (respectively solely
of its diagonals) by other labels of M. For any M-clique p, let the elements of CM
defined by Hp := ∑p′�bep

p′ and Kp := ∑p′�dp
(−1)ham(p′,p)p′, where ham(p′, p) is the

Hamming distance between p′ and p, that is the number of arcs (x, y) such that p′(x, y) 6=
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p(x, y). By triangularity and by Möbius inversion, the family of all the Hp (respectively
Kp) forms a basis of CM, called H-basis (respectively K-basis). For instance, in CZ,

H
1

1

2
2

= 1
2

+ 1 2
2

+ 1

12
+ 1

1

2
2

, K
1

1

2
2

= 1

1

2
2 −

1

2
2 − 1

1

2 +
1

2 . (1.3.1)

If p is anM-clique, we denote by p0 (respectively pi) the label of its base (respectively
i-th edge). Moreover, d0(p) (respectively di(p)) is the M-clique obtained by replacing
the label of the base (respectively i-th edge) of p by 1M.

Proposition 1.3.5. LetM be a unitary magma. The partial composition of CM expresses over
the H-basis, for anyM-cliques p and q different from and any valid integer i, as

Hp ◦i Hq =


Hp◦iq + Hdi(p)◦iq

+ Hp◦id0(q) + Hdi(p)◦id0(q) if pi 6= 1M and q0 6= 1M,
Hp◦iq + Hdi(p)◦iq

if pi 6= 1M,
Hp◦iq + Hp◦id0(q) if q0 6= 1M,
Hp◦iq otherwise.

(1.3.2)

Proposition 1.3.6. LetM be a unitary magma. The partial composition of CM expresses over
the K-basis, for anyM-cliques p and q different from and any valid integer i, as

Kp ◦i Kq =

{
Kp◦iq if pi ? q0 = 1M,
Kp◦iq + Kdi(p)◦id0(q) otherwise.

(1.3.3)

For instance, in CZ,

H
1
◦2 H

1

= H + 2 H
1

+ H
2

, K
1
◦2 K

1

= K + K
2

. (1.3.4)

2 Quotients and suboperads

2.1 Operads on subfamilies ofM-cliques

We now define quotients of CM, leading to the construction of some new operads in-
volving various combinatorial objects which are, basically,M-cliques with some restric-
tions. Figure 1 shows a diagram containing all the considered quotients and suboperads
of CM.

Bubbles. An M-clique is an M-bubble if it has no solid diagonals. Let RBubM be the
subspace of CM generated by allM-cliques that are not bubbles. As quotient of vector
spaces, BubM := CM/RBubM is the linear span of all M-bubbles. Moreover, the space
BubM is a quotient of operads of CM. When M is finite, the dimensions of BubM
satisfy, for any n > 2, dim BubM(n) = mn+1, where m := #M.
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WhiteM-cliques. An M-clique is white if it has no solid edges nor solid base. Let
WhiM be the subspace of CM of all white M-cliques. The space WhiM is a sub-
operad of CM. When M is finite, the dimensions of WhiM satisfy, for any n > 2,
dim WhiM(n) = m(n+1)(n−2)/2, where m := #M.

Restricting the crossing. The crossing of a solid diagonal of anM-clique p is the number
of solid diagonals crossing it. The crossing of p is the maximal crossing of its solid
diagonals. For any integer k > 0, let RCrokM be the subspace of CM generated by
all M-cliques of crossings greater than k. As quotient of vector spaces, CrokM :=
CM/RCrokM

is the linear span of allM-cliques of crossings no greater than k. Moreover,
the space CrokM is both a quotient and a suboperad of CM. Observe that Cro0M is the
operad BubM. Let us set NCM := Cro0M. Any M-clique of NCM is a noncrossing
configuration [6] where each diagonal is decorated by an element of M\ {1M}. These
operads NCM have a lot of nice properties and will be studied in Section 3.

AcyclicM-cliques. An M-clique is acyclic if it does not contain any cycle formed by
solid arcs. Let RAcyM be the subspace of CM generated by all M-cliques that are
not acyclic. As quotient of vector spaces, AcyM := CM/RAcyM is the linear span of
all acyclic M-cliques. When M has no nontrivial unit divisors, the space AcyM is a
quotient of operads of CM. Any D0-clique of AcyD0 can be seen as a forest of trees.
The dimensions of this operad begin by 1, 7, 38, 291, 2932 (Sequence A001858, except for
the first terms).

Nesting-freeM-cliques. A solid arc (x′, y′) is nested in a solid arc (x, y) of anM-clique
p if x 6 x′ < y′ 6 y. We say that p is nesting-free if for any solid arcs (x, y) and (x′, y′)
of p such that (x′, y′) is nested in (x, y), (x′, y′) = (x, y). Let RNesM be the subspace of
CM generated by all M-cliques that are not nesting-free. As quotient of vector spaces,
NesM := CM/RNesM is the linear span of all nesting-free M-cliques. When M has
no nontrivial unit divisors, the space NesM is a quotient of operads of CM. Any D0-
clique of NesD0 can be seen as an nesting-free clique. The dimensions of this operad
begin by 1, 5, 14, 42, 132, and are Catalan numbers (Sequence A000108, except for the
first terms). In the same way as considering M-cliques of crossings no greater than k
leads to quotients CrokM of CM, it is possible to define analogous quotients NeskM
spanned byM-cliques having solid arcs that nest at most k other ones.

Restricting the degree. The degree of a vertex x of anM-clique p is the number of solid
arcs adjacent to x. The degree of p is the maximal degree of its vertices. For any integer
k > 0, let RDegkM be the subspace of CM generated by allM-cliques of degrees greater
than k. As quotient of vector spaces, DegkM := CM/RDegkM

is the linear span of all
M-cliques of degrees no greater than k. When M has no nontrivial unit divisors, the
space DegkM is a quotient of operads of CM. Observe that Deg0M is the associative
operad As. Let us set InvM := Deg1M. Any D0-clique of InvD0 of size n can be

http://oeis.org/A001858
http://oeis.org/A000108
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seen as a partition of the set [n + 1] in singletons or pairs. In this case, InvD0 involves
involutions, or equivalently standard Young tableaux. The dimensions of this operad
begin by 1, 4, 10, 26, 76 (Sequence A000085, except for the first terms). Moreover, the
dimensions of InvD1 begin by 1, 7, 25, 81, 331 (Sequence A047974, except for the first
terms). Besides, any D0-clique of Deg2D0 can be seen as a thunderstorm graph (i.e., a
graph where connected components are cycles or paths). The dimensions of this operad
begin by 1, 8, 41, 253, 1858 (Sequence A136281, except for the first terms).

2.2 Mixing quotients and substructures

For any operad O and ideals of operads R1 and R2 of O, the space R1 +R2 is still an
ideal of operads of O, and O/R1+R2 is a quotient of operads of both O/R1 and O/R2 .
Moreover, ifO′ is a suboperad ofO and R is an ideal of operads ofO, the space R∩O′ is
an ideal of operads of O′, and O′/R∩O′ is a quotient of operads of O′. For these reasons,
we can combine the constructions of Section 2.1 to build a bunch of new quotients of
operads of CM.

When M is finite and has cardinal 2, several interesting phenomena occur already.
In this case, M is necessarily isomorphic to N2 or to D0, but only D0 satisfies the
conditions required by all the propositions of Section 2.1. The obtained substructures of
CD0 are operads that involve some very classical combinatorial objects. For instance:

Schröder trees. Let SchM := WhiM/RCro0M∩WhiM. The operad SchD0 involves
Schröder trees. Its dimensions begin by 1, 1, 3, 11, 45 (Sequence A001003).

Forests of paths. Let PatM := CM/RAcyM+RDeg2M
. The operad PatD0 involves forests

of non-rooted trees that are paths. Its dimensions begin by 1, 7, 34, 206, 1486 (Se-
quence A011800, except for the first terms).

Forests of trees. Let ForM := CM/RAcyM+RCro0M
. The operad ForD0 involves forests

of rooted trees without crossing edges. Its dimensions begin by 1, 7, 33, 181, 1083
(Sequence A054727, except for the first terms).

Motzkin configurations. Let MotM := CM/RCro0M+RDeg1M
. The operad MotD0 in-

volves Motzkin paths. Its dimensions begin by 1, 4, 9, 21, 51 (Sequence A001006, except
for the first terms).

Dissections of polygons. Let DisM := WhiM/(RCro0M+RDeg1M)∩WhiM. The operad
DisD0 involves dissections of polygons by strictly disjoint diagonals. Its dimensions
begin by 1, 1, 3, 6, 13 (Sequence A093128, except for the first terms).

Lucas configurations. Let LucM := CM/RBubM+RDeg1M
. The operad LucD0 involves

D0-bubbles p such that any vertex of p belongs to at most one solid edge. Its dimensions

http://oeis.org/A000085
http://oeis.org/A047974
http://oeis.org/A136281
http://oeis.org/A001003
http://oeis.org/A011800
http://oeis.org/A054727
http://oeis.org/A001006
http://oeis.org/A093128
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begin by 1, 4, 7, 11, 18, and are Lucas numbers (Sequence A000032, except for the first
terms).

2.3 Constructing existing operads

We give here three examples of already known operads that can be build through the
construction C.

Bicolored noncrossing configurations. The operad of bicolored noncrossing configurations
BNC is an operad defined in [4] which involves noncrossing configurations where each
solid diagonal can be blue or red, and each edge can be blue or uncolored. This operad
is in fact a special case of our general construction C. Let MBNC := {1, a, b} be the
unitary magma wherein operation ? is defined so that a and b are idempotent, and
a ? b = 1 = b ? a. Observe that MBNC is a commutative unitary magma, but, since
(b ? a) ? a = a and b ? (a ? a) = 1, the operation ? is not associative.

Proposition 2.3.1. The suboperad of NCMBNC consisting in its unit and allMBNC-noncrossing
configurations without edges labeled by 1 is isomorphic to the operad BNC.

Multi-tildes and double multi-tildes. Appearing from the context of formal languages
theory, multi-tildes are operators introduced in [2] as tools offering a convenient way to
express regular languages. As shown in [11], the set of all multi-tildes admits a very
natural structure of an operad MT. Double multi-tildes are extensions of these operators
introduced in [8] that increase their expressiveness and admit also a structure of an
operad DMT. Let MDMT be the unitary magma MDMT := D2

0 and MMT be the sub-
unitary magma ofMDMT on the set {(1,1), (0,1)}.
Proposition 2.3.2. The operad CMDMT (respectively CMMT) is isomorphic to the suboperad
of DMT (respectively MT) consisting in all double (respectively simple) multi-tildes except the
three (respectively one) nontrivial ones of arity 1.

3 Operads of decorated noncrossing configurations

In this section, we study in details the suboperad NCM of CM. As observed in Sec-
tion 2.1, this operad involves all M-cliques that do not admit crossing solid diagonals.
We callM-noncrossing configurations such objects.

3.1 General properties

The set of all M-noncrossing configurations is in one-to-one correspondence with the
set of Schröder trees (i.e., rooted planar trees where internal nodes have arities 2 or

http://oeis.org/A000032
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more) where the edges adjacent to the roots are labeled onM, the edges connecting two
internal nodes are labeled onM\{1M}, and the edges adjacent to the leaves are labeled
onM. This is realized by computing the dual trees ofM-noncrossing configurations by
considering the labels of the solid diagonals. We call these treesM-dual trees. Here is an
example of a Z-noncrossing configuration and the Z-dual tree encoding it:

1

2

1

4

1

2

3

3
1

2 1

←→ 1

2

2

1 0

1

0

4

1

2

0

3

3

0

1

. (3.1.1)

By seeing the elements of NCM as M-dual trees, we can rephrase the partial com-
position of this operad as follows. If s and t are twoM-dual trees and i is a valid integer,
the tree s ◦i t is computed by grafting the root of t to the i-th leaf of s. Then, by denoting
by b the label of the edge adjacent to the root of t and by a the label of the edge adjacent
to the i-th leaf of s, we have two cases to consider, depending on the value of c := a ? b.
If c 6= 1M, we label the edge connecting s and t by c. Otherwise, when c = 1M, we
contract the edge connecting s and t by merging the root of t and the father of the i-th
leaf of s. For instance, in NCN3, we have

0

1

1 2

1

0

0

2

◦2 0

0

1

2

1

= 0

1

0

0

0

2

0

1

2

2

1

2

,
0

1

1 2

1

0

0

2

◦3 0

0

1

2

1

=
0

1 0

1 0

1

0

1

2

0

2

. (3.1.2)

Let TM be the set of allM-cliques of arity 2. We call such cliquesM-triangles.

Proposition 3.1.1. LetM be a unitary magma. The set TM is the unique minimal generating
set of NCM.

Proposition 3.1.2. LetM be a finite unitary magma and m be its cardinality. The Hilbert series
HNCM(t) of NCM satisfies

t+
(

m3 − 2m2 + 2m− 1
)

t2 +
(

2m2t− 3mt + 2t− 1
)
HNCM(t)+ (m− 1)HNCM(t)2 = 0.

(3.1.3)

From this result, together with classical arguments involving Narayana numbers, we
obtain that for all n > 2,

dim NCM(n) = ∑
06k6n−2

mn+k+1(m− 1)n−k−2 1
k + 1

(
n− 2

k

)(
n− 1

k

)
. (3.1.4)

For instance, when #M = 2, the dimensions of NCM begin by 1, 8, 48, 352, 2880
(Sequence A054726, except for the first terms).

http://oeis.org/A054726


Combalgebraic structures on decorated cliques 11

3.2 Presentation, Koszulity, and Koszul dual

In what follows,M-triangles p =
p1

p3p2 are denoted by words p1p2p3 ∈ M3.

Theorem 3.2.1. Let M be a finite unitary magma. The operad NCM is binary, quadratic,
Koszul, and admits the presentation NCM ' Free(TM)/〈R〉, where R is the space of relations
generated by

p1p2p3 ◦1 q1q2q3 − p1r2p3 ◦1 r1q2q3, if p2 ? q1 = r2 ? r1 6= 1M, (3.2.1a)

p1p2p3 ◦1 q1q2q3 − p1q2r3 ◦2 r1q3p3, if p2 ? q1 = r3 ? r1 = 1M, (3.2.1b)

p1p2p3 ◦2 q1q2q3 − p1p2r3 ◦2 r1q2q3, if p3 ? q1 = r3 ? r1 6= 1M, (3.2.1c)

where p1, p2, p3, q1, q2, q3, r1, r2, r3 ∈ M.

Proof. The proof is long, technical, but classical and uses techniques from rewriting the-
ory [1]. It consists in defining a rewrite rule→ from R on syntax trees ofM-triangles, by
showing that→ is convergent, and prove that→ admits as many normal forms as basis
elements of NCM of arity n for all n > 1. The fact that NCM is Koszul is a consequence
of the existence of such a rewrite rule→ (see [5, 9]).

We can now compute a presentation of the Koszul dual NCM! of NCM from the
presentation of NCM provided by Theorem 3.2.1.

Proposition 3.2.2. LetM be a finite unitary magma. The operad NCM! admits the presentation
NCM! ' Free(TM)/〈R⊥〉, where R⊥ is the space of relations generated by

∑
p2,q1∈M,p2?q1=δ

p1p2p3 ◦1 q1q2q3, where p1, p3, q2, q3 ∈ M, δ ∈ M\ {1M}, (3.2.2a)

∑
p2,q1∈M,p2?q1=1M

p1p2p3 ◦1 q1q2q3 − p1q2p2 ◦2 q1q3p3, where p1, p3, q2, q3 ∈ M,

(3.2.2b)
∑

p3,q1∈M,p3?q1=δ

p1p2p3 ◦2 q1q2q3, where p1, p2, q2, q3 ∈ M, δ ∈ M\ {1M}. (3.2.2c)

Proposition 3.2.3. LetM be a finite unitary magma and m be its cardinality. The Hilbert series
HNCM!(t) of NCM! satisfies

t+(m− 1)t2 +
(

2m2t− 3mt + 2t− 1
)
HNCM!(t)+

(
m3 − 2m2 + 2m− 1

)
HNCM!(t)2 = 0.

(3.2.3)
This is the generating series of all noncrossing configurations where all edges and bases are labeled
by pairs (a, a) ∈ M2, and all solid diagonals are labeled by pairs (a, b) ∈ M2 where a 6= b.

Proposition 3.2.3 hence provides a combinatorial description of the elements of NCM!.
For instance, when #M = 2, the dimensions of NCM! begin by 1, 8, 80, 992, 13760 (Se-
quence A234596). It is worthwhile to observe that the dimensions of NCM! in this case
are the ones of the operad BNC [4] (see Section 2.3).

http://oeis.org/A234596


12 Samuele Giraudo

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] P. Caron, J.-C. Champarnaud, and L. Mignot. “Multi-Bar and Multi-Tilde Regular Opera-
tors”. J. Autom. Lang. Comb. 16 (2011), pp. 11–26.

[3] F. Chapoton. “Operads and algebraic combinatorics of trees”. Sém. Lothar. Combin. 58 (2008),
Art. B58c. URL.

[4] F. Chapoton and S. Giraudo. “Enveloping operads and bicoloured noncrossing configura-
tions”. Exp. Math. 23 (2014), pp. 332–349. DOI.

[5] V. Dotsenko and A. Khoroshkin. “Gröbner bases for operads”. Duke Math. J. 153 (2010),
pp. 363–396. DOI.

[6] P. Flajolet and M. Noy. “Analytic combinatorics of non-crossing configurations”. Discrete
Math. 204 (1999), pp. 203–229. DOI.

[7] S. Giraudo. “Operads from posets and Koszul duality”. Eur. J. Combin. 56 (2016), pp. 1–32.
DOI.

[8] S. Giraudo, J.-G. Luque, L. Mignot, and F. Nicart. “Operads, quasiorders, and regular lan-
guages”. Adv. Appl. Math. 75 (2016), pp. 56–93. DOI.

[9] E. Hoffbeck. “A Poincaré-Birkhoff-Witt criterion for Koszul operads”. Manuscripta Math.
131 (2010), pp. 87–110. DOI.

[10] J.-L. Loday and B. Vallette. Algebraic Operads. Grundlehren der mathematischen Wis-
senschaften, Vol. 346. Springer, 2012.

[11] J.-G. Luque, L. Mignot, and F. Nicart. “Some Combinatorial Operators in Language The-
ory”. J. Autom. Lang. Comb. 18 (2013), pp. 27–52.

[12] M. A. Méndez. Set Operads in Combinatorics and Computer Science. SpringerBriefs in Mathe-
matics. Springer, 2015.

[13] N. J. A. Sloane. “The On-Line Encyclopedia of Integer Sequences”. URL.

[14] B. Vallette. “Homology of generalized partition posets”. J. Pure Appl. Algebra 208 (2007),
pp. 699–725. DOI.

https://www.mat.univie.ac.at/~slc/wpapers/s58chapoton.html
https://doi.org/10.1080/10586458.2014.910850
https://doi.org/10.1215/00127094-2010-026
https://doi.org/10.1016/s0012-365x(98)00372-0
https://doi.org/10.1016/j.ejc.2016.02.008
https://doi.org/10.1016/j.aam.2016.01.002
https://doi.org/10.1007/s00229-009-0303-2
https://oeis.org/
https://doi.org/10.1016/j.jpaa.2006.03.012

	Operads of decorated cliques
	Unitary magmas and decorated cliques
	A functor from unitary magmas to operads
	General properties

	Quotients and suboperads
	Operads on subfamilies of M-cliques
	Mixing quotients and substructures
	Constructing existing operads

	Operads of decorated noncrossing configurations
	General properties
	Presentation, Koszulity, and Koszul dual


